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Abstract— This paper proposes a face-swap method, wherein the 

use of a depth sensor and improved algorithms are used to 

improve the quality and realism of a face swap process. By 

tracking head pose and facial features in 3D using a Kinect depth 

camera, an accurate model of the face can be constructed and 

used to deform a texture which is then drawn on top of a 2D 

video stream. The use of random regression forests for head pose 

estimation is explored, along with a novel method for blending 

textures based on luminance. The proposed system shows good 

results through a wider range of head rotations than previous 

methods, and is able to run at an average of 25fps.  
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I. INTRODUCTION 

The goal of the proposed method is to improve upon a face-
swap method in prior research [2-7] by investigating the use of 
a structured light depth camera, and the use of algorithms more 
suited to this type of data. A novel method for blending 
textures based on luminance is also explored. 

The original method would swap people’s faces as they 
walked past a display, and demonstrated many common 
algorithms for face detection and recognition. It assumed a 
simple flat-replacement model with no rotation of the face 
texture so it would only work well if the user was facing 
directly towards the camera. This can be improved upon by 
tracking the user’s face in 3D and utilizing a model of the face 
to project the face overlay texture, which will warp the texture 
to match the actual face. 

Much work has already been done on the face-swap 
system, mainly looking at improving performance and more 
advanced blending techniques [2, 6, 7]. Instead of improving 
on these methods, this paper proposes an entirely different 
approach using algorithms more suited for depth camera 
imagery. 

 

II. BACKGROUND 

A. The Face-Swap System 

The original face-swap system requires various algorithms; 
the core consists of a face-detection algorithm such as the 
Haar-Cascade, which is used to locate the face in the image and 
to know where to overlay the swapped face. Object tracking 
algorithms such as Camshift or Optical Flow help improve 
performance by removing the need to re-detect the face in 
every time. It can also help smooth out the movement between 
frames, as face detection algorithms tend to be imprecise in 
locating the exact location of the face.  

   

Figure 1. Results from two previous face-swap papers [4, 5] 

After the face is localised, the face texture can be extracted 
from the video and stored in a database, and a new face can be 
overlaid on top of the video feed in real-time. This is done by 
simply resizing the texture to match the bounding box of the 
detected face, although this does not work well if the face 
rotates since the bounding box does not rotate with it.  

To prevent swapping a user’s face with their own a face 
recognition algorithm such as Eigenfaces or Fisherfaces must 
be used, which compares the detected face against a database 
of faces to ensure the two are different. 

B. Previous Work 

The first student paper performed on this subject [2] 
implemented the Haar-Cascade algorithm for face recognition, 
but only used a simple time-based averaging algorithm for 
tracking, and had no face recognition at all. The averaging did 
provide some resilience to dropped frames but because it had to 
detect the face for each new frame it had reduced performance. 
It did however attempt to adjust the face overlay colour by 



analysing a histogram of skin coloured pixels, which could 
potentially be adapted for the method proposed in this paper. 

This was improved upon by subsequent papers [3, 4]  
which added face recognition using the Eigenfaces algorithm, 
and object tracking using Camshift. These modifications 
significantly improved performance and reliability, although 
the initial face detection stage still took a large amount of time 
to process. The Camshift algorithm additionally allowed the 
face texture to be rotated in the plane of the screen. 

One paper looked at replacing the face recognition 
algorithm with Local Binary Patterns (LBP), which improved 
the running performance, but offered no improvements for the 
initial face detection stage [7]. 

Another paper looked at improving the performance of the 
initial face detection by implementing the Viola-Jones face 
detector algorithm using a highly parallel GPGPU, which 
showed an improvement of up to 300% [6]. It also investigated 
the use of Fisherfaces for face recognition, which has the 
advantage of being invariant to changing lighting conditions. It 
improved the reliability of tracking and produced less false 
positives than previous methods, and additionally attempted to 
improve the face overlay blending by utilizing a radial blur 
filter to smooth the edges of the face texture. The radial filter 
produced very good results, but only in the case where the 
lighting conditions and head rotation were similar. 

     

Figure 2. Face replace using a radial blur filter [6] 

 

C. Depth Sensors 

There are various methods for acquiring 3D depth data 
which should all perform well for the methods outlined in this 
paper. Structured-light is one such technology that has become 
rather popular, due to the emergence of cheap depth cameras 
such as the Microsoft Kinect or the PrimeSense camera. These 
cameras do not perform as well as more sophisticated cameras 
and fail in bright sunlight, but their low cost provides a huge 
advantage for researchers. 

 

Figure 3. The Kinect depth camera [1] 

Adapting the existing face-swap framework to utilize a 
structured-light depth sensor allows the use of much more 
advanced algorithms specifically designed for RGB+depth 
data. Some of the commercial offerings that implement such 
algorithms include Microsoft’s Kinect Developer SDK [1] 
which is designed for use with their Kinect depth sensor, and 
Visage Technologies’ face tracking library [8] which operates 
on regular 2D imagery. Unfortunately the algorithms used are 
proprietary and details about their implementation are not 
available, so this paper will outline published algorithms that 
achieve a similar result. 

 

D. Head Pose Estimation 

 

Figure 4. Head Pose Estimation [9] 

There are a few various algorithms that can be used to 
determine the orientation of the head in 3D space, which 
generally use machine learning techniques [9, 10] such as use 
of neural networks and random regression forests, in order to 
determine a rough orientation estimate. While the Kinect face 
tracking library does not outline the specific algorithm it uses, 
it is quite possible it uses neural networks or regression forests 
as Microsoft have published a paper which uses these methods 
for detecting a skeleton model [11].  

Another paper proposes a more analytical method which 
involves solving a large matrix, and has the advantage that it 
does not require prior training [12]. This method was able to 
run in real-time, with the head between 0.6 to 6 meters from 
the camera. 
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E. Candide Face Model 

The Candide model is widely used for various research, as 
it provides a simple mesh with standardised features and 
defines a robust way to deform the mesh based on supplied 
parameters. The latest version is Candide-3, and implements 
113 vertices, 65 animation units representing various facial 
features, and 14 shape units [13]. It also contains a subset of 
the MPEG-4 FBA specification [14], which is intended to 
provide a way to animate various facial expressions. 

The Shape Units allow the Candide-3 mesh to adapt to any 
user’s face, such as by changing the distance between the eyes, 
or the width and height of the mesh. 

 

F. Face Expression Tracking 

In order to control the Animation and Shape Units in the 
Candide-3 model, the facial features must be extracted from the 
given video frame. This is usually done in 2D on the colour 
image stream [8] by locating important facial fiducial points, 
however some algorithms have been devised which operate on 
depth imagery instead [15]. 

There are many methods that can be used for locating these 
facial feature points, such as the Haar classifier as used in 
Tresadern, et al. [16], or through stochastic methods such as 
those used in Dornaika and Davoine [17]. 

 

Figure 5. Tracking and recognition of  facial features[17] 

The Kinect library also provides a robust facial feature 
tracking algorithm designed specifically for the Candide 
model, however the exact methods used are not published. It 
only provides 6 Animation Units and 11 Shape Units, which is 
not enough to control all of the facial animation parameters, but 
it is enough to show basic deformation of the mouth, chin, and 
eyebrows. 

 

G. Limitations 

There are a few limitations that apply to the current work 
done on the 2D face-swap system, which this paper hopes to 
solve. Currently these methods assume the face is a flat 
rectangle, with the bounds detected through the use of a face 
detection algorithm such as the Haar Cascade classifier or the 
Viola Jones classifier. These algorithms do not provide any 
information about the shape of the face being detected, nor the 
orientation and pose of the face in 3D space. 

Because of this assumption, the texture cannot be 
realistically blended in all orientations of the face, especially 
for extreme rotations which introduce occlusion and significant 

texture warping. This cannot be fixed by improved blending 
techniques such as the radial blur filter [6], because it assumes 
the user is looking directly towards the camera with no rotation 
in 3D space.  

 

III. SOLUTION 

A. Overview 

The methods outlined above are 
combined in order to build a new face-
swapping demonstration system, using a 
structured light depth camera instead of 
a regular colour camera. The proposed 
method is restricted to using a pre-
defined face overlay texture and face 
model.  

The proposed method consists of a 
head tracking and pose determination 
algorithm, but does not implement face 
recognition like the original method as 
the face overlay texture is pre-defined. 
After determining the head pose and 
location, facial features are extracted 
which are later used to deform the face 
model. 

The Candide-3 model is used as the 
face model, which can be deformed by 
head pose, animation units detected 
from the facial features, and shape units 
which represent the shape of the 
detected face. These deformations allow 
a single mesh to take the shape of any detected face.  

 A face texture can then be mapped to the model so that it 
deforms to match the tracked user, and an advanced luminance-
blend algorithm used to blend the texture onto the underlying 
video frame. 

Finally, the texture mapped face mesh is passed onto a 3D 
rendering engine which can project the face model with the 
assigned texture onto the camera image plane, thus overlaying 
the face onto a tracked user. 

 

B. Face Tracking 

The Kinect Developer 
SDK is used for detecting and 
tracking faces within video 
obtained from a depth sensor. 
It operates on both RGB and 
depth imagery to obtain the 
head pose, head location in 3D 
space, 2D facial feature points 
(shown in the figure to the 
right), and Candide-compatible 
animation and shape units. The 
rotation and location alone are 
enough to implement the face 
swap method, although implementing shape units will allow 

[1] Figure 6. 2D facial features 

returned by the Kinect library [1] 



the face model to match different head shapes, and animation 
units will allow the face model to match the user’s facial 
expressions. 

The initial search for a face is a lengthy operation, so the 
Kinect library provides a separate tracking algorithm which 
performs much less processing once a face is found in the 
image. This allows for much higher frame rates during active 
use, in much the same way the original face-swap methods 
used Camshift to prevent having to detect a face every frame. 

Generally it takes a certain amount of time before shape 
units are available to the application, presumably because the 
library needs to learn the shape of the tracked face. Once these 
values are available, the face model can be updated to match 
the user’s personal head shape and size. 

The biggest limitation of the Kinect Face Tracking Library 
is that it only reports 6 animation units, which only provides 
enough information to animate the lips, eyebrows, and lower 
jaw. The MPEG-4 FBA specification [14] defines 66 Facial 
Animation Parameters (FAPs) in total, so other libraries and 
algorithms may be able to detect a much larger set. 

Another problem with the Face Tracking Library is latency 
and jitter in the returned data, which causes some alignment 
issues of the face overlay when the user is moving. The jitter 
can be reduced through the use of a temporal filtering function 
such as a low pass filter or a kalman filter, and the latency 
could be improved by improving the underlying library or 
augmenting it with other computer vision techniques such as 
optical flow or the Camshift algorithm. 

C. Face Model  

The face model is 
implemented using the 
WFM file format, which 
provides a way to define 
vertices, faces, animation 
units, shape units, texture 
co-ordinates, and a global 
transformation. However for 
simplicity, the Candide-3 
model is used as it is a well-
established model used in 
many research papers [13], 
although the texture co-
ordinates must be defined manually. The Candide-3 model 
defines 65 animation units and 14 shape units, but not all of 
these are actually used or required.  

AU/SU deformation of the mesh is optional, since just the 
head rotation and translation can be enough to transform the 
face model to align properly with the user’s face. However the 
use of SUs to deform the mesh could potentially allow the 
system to work over a much larger variety of faces, and the use 
of AUs can modify the texture to make it appear to match the 
user’s facial expressions. 

D. Texture Mapping 

For best results the desired face texture can be manually 
mapped to the Candide-3 mesh, so that the various facial 
features are properly aligned to the texture. Alternatively, the 

texture can be automatically extracted from the current video 
frame, using the current face mesh overlay to map the texture 
to the Candide-3 vertices. This technique may fail if the head is 
rotated, due to obscured regions in the face, so a manual texture 
mapping is used for this paper. 

 

Figure 8. Manual Candide-3 Texture Mapping 

The figure above shows the process of manually mapping 
UV texture co-ordinates of the Candide-3 model to a 2D face 
texture image. The left view shows the 2D texture co-ordinates 
with respect to the texture, while the 3 views on the right show 
the texture applied to the 3D Candie-3 mesh. 

 

E. Blending 

In order to provide a smooth blend of the face texture onto 
the video stream, the texture is manually blurred at the edges 
and stored as an RGB+Alpha image. This improves the 
blending around the edges of the face overlay, by allowing the 
face overlay texture to smoothly blend into the underlying 
video frame.  

However if lighting conditions differ from the original 
overlay image, the overlay will not match the video and it will 
not blend smoothly. To help improve blending under differing 
lighting conditions, we can employ a luminance blend followed 
by automatic brightness correction, as shown in the following 
figure: 

 

Figure 9. Left – naïve alpha blend, middle – luminance blend, right – 

luminance blend with automatic levels correction. 

The luminance blend combines the luminance (brightness) 
of the face texture with the chrominance (colour) of the 
underlying video frame. This works because most of the 
perceptible detail in an image lies in the luminance channel 
[18], so the result is that the face takes the colour of the 
underlying video while retaining the detail. This is especially 
useful for cameras with poor white balance correction, such as 
in the figure above which makes the face appear to have a 
purple tint. 

Figure 7. The Candide-3 model 



Luminance blending is performed in a luma-chroma colour 
space using an encoding such as Y’CbCr which splits the 
luminance and chrominance into perceptually meaningful 
information. For this application the conversion between RGB 
and Y’CbCr as defined by the JPEG standard is used[19]: 

 

[
  

  
  

]  [
               

                 
                 

] [
 
 
 
] 

 

[
 
 
 
]  [

       
                 
       

] [
  
  
  

] 

 

The exact equation used is not important, as long as it 
converts between RGB and luma-chroma colour space. The 
following figure illustrates the effect of converting between 
RGB and Y’CbCr encodings: 

 

Figure 10. Y'CbCr components1 

Generally it is not desirable to use a colour space such as 
HSV, because the value component does not correspond to 
human perception of luminosity (in HSV colour space all fully 
saturated colours are defined to be the same brightness, when 
in reality green is brighter than blue). It is also not trivial to 
convert between RGB and HSV colour spaces, and involves a 
lot of conditional calculations. 

Luminance blending alone is not sufficient, as differences 
in brightness can show up if the video is substantially brighter 
or darker than the face overlay. To compensate for this, the 
underlying face in the video frame is analysed to compute the 
minimum and maximum brightness, and the face overlay 
texture compensated to match accordingly. This helps keep the 
blend looking consistent in a wide range of lighting conditions. 

                                                           
1
 http://commons.wikimedia.org/wiki/File:Barn-yuv.png    

 

Figure 11. Brightness correction using luminance histograms 

This is done by analysing the luminance histogram of the 
underlying face region in the video, which counts how many 
times a pixel value occurs in the image. To find the minimum 
and maximum brightness, the pixel counts are summed to find 
the total count, and then accumulated to find the 1% and 99% 
points in the histogram. This helps provide some robustness 
against noise, in case there are a few counts of completely 
black or white pixels. To simplify calculations, this assumes 
the source image is normalised.  

The only limitation remaining is that these methods cannot 
compensate for differing shadows, for example if the light 
source is located on the opposite side of the face overlay 
image, or if a shadow falls onto the face. This could perhaps be 
compensated for by blurring the underlying face image, and 
blending the luminance channels of both the face and the video 
to attempt to add shadows to the face overlay texture, although 
this was not explored in this paper.  

For efficiency and flexibility, this process could be 
performed using GLSL shaders, which run directly on the GPU 
and are well suited for this type of processing. The use of 
Y’CbCr colour space serves well for this kind of work, as the 
transformation between RGB and Y’CbCr can be done quickly 
and efficiently with a single matrix multiply, and the brightness 
correction values can be passed in as parameters. 

 

F. Rendering 

In order to overlay the 3D face model on top of the 2D 
video feed, the 3D model must be projected onto the plane of 
the camera using a perspective transform. This can be modelled 
with a simple pin-hole camera model, which defines the 
camera’s focal plane as a function of its sensor size and focal 
length. This model is shown below: 

http://commons.wikimedia.org/wiki/File:Barn-yuv.png


 

Figure 12. Pinhole camera model 

 

The deformed 3D face model’s origin is defined to be at the 
centre of the head, so it must be rotated and then translated in 
order to put it in world space. After this a perspective 
projection matrix can be applied to project the 3D model onto 
the image plane.  

Rotation of the face model returned by the Kinect Face 
Tracking Library is defined by a set of three intrinsic euler 
rotations (α, β, γ): 
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And translation is defined as meters from the camera’s origin: 
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The Kinect camera has a small offset between the camera 
origin and the world origin, however for this application it can 
be ignored it as it does not introduce much error. Thus, eye-
space and world-space are identical and no transformation 
between the two is required. 

To construct the perspective projection matrix, the intrinsic 
camera parameters must be known. For the Kinect camera, the 
focal length is approximately 87.64mm at a resolution of 
640x480. Using these values we can construct the perspective 
projection matrix[20]: 
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where   is the focal length,         
     

      
,    is the near 

clipping plane, and    is the far clipping plane. The near and 

far clipping planes are used for depth testing within the 
OpenGL pipeline[20], and for best results should be set to the 
closest and furthest distances the Kinect can measure. 

Finally to render the 3D model onto the image plane, the 
required transformations are applied to every vertex of the face 
model in order to convert them to Normalized Device Space 
(NDC): 
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The process of mapping world co-ordinates to clipping co-
ordinates is shown below: 

 

Figure 13. OpenGL Perspective Projection [20] 

  



IV. RESULTS 

 

 

Figure 14. Final result showing luminance blend, automatic level 

adjustment, and texture warping  

 

Figure 15. Result showing inaccuarcy in texture to mesh mapping - 
the nose has deformed incorrectly  

 

Figure 16. Result showing the effects of texture warping and 3D 
projection 

A. Hardware & Software 

The solution was implemented in VC++ using the Kinect 
Face Tracking Library [1], with OpenGL and GLSL shaders 
for rendering, and OpenNI for the depth sensor interface. 
OpenNI allows the demo software to be used with any 
compatible depth camera, although the Kinect Face Tracking 
Library may restrict use to Kinect cameras only. 

A Kinect depth sensor was used as the input device and the 
demonstration program was run on an Intel i5 3.3GHz CPU 
with an NVIDIA GPU for OpenGL rendering. The 
demonstration program was compiled with full optimisations 
and no debug information, to maximise performance. 
Performance is significantly reduced if it is compiled in debug 
mode. 

 

B. Quantified Results 

The demonstration program ran at between 15-30FPS while 
detecting a face, which is close to the 30FPS update rate of the 
Kinect camera, and similar to previous research[7] [6]. 

Limits: 

Minimum Detection Distance 550mm 

X Rotation (Pitch) -40° to 40° 

Y Rotation (Yaw) -40° to 40° 

Z Rotation (Roll) -80° to 80° 

 

C. Limitations 

The implemented solution is limited in the range of face 
poses it can track, as it is only trained to detect faces that are 
looking towards the camera. It tracks best when the head pitch 
is less than 20°, roll is less than 90°, and yaw is less than 45°. 
This is a limitation of the proprietary library used, but could 
potentially be improved by training a custom implementation 
on a larger set of head poses. It also exhibits poor tracking 
when the head rotates close to these limits. 

Heads must also not be too far or too close, or they cannot 
be tracked. This is partially due to the reduced resolution of the 
depth imagery at close and far ranges, but is actually more of a 
limitation of the training set.  

The tracked head pose also shows some jitter and latency, 
because no filtering or interpolation is performed on the data. 
Tracking latency is particularly noticeable when the head 
moves across the frame, and results in misalignment between 
the face overlay and the tracked user. 

Another limitation of this proposed method is the absence 
of any face recognition or face texture extraction algorithms, 
such as what was used in previous work. As such it must rely 
on manually provided face textures to overlay onto the user’s 
face, and the texture must be manually mapped to the Candide-
3 face model.  



V. CONCLUSION 

The proposed method provides a much more realistic face 
overlay than what could be done with regular 2D algorithms, 
while operating with around the same level of performance and 
reliability. The improved blending technique allows a face 
overlay texture to work in different lighting conditions, and the 
face model allows the face texture to be warped to match the 
tracked user’s face. 

 

A. Future Work 

There are many improvements that could be made in future 
research to re-implement the original functionality provided in 
existing face-swap work, such as automatic face texture 
extraction and face recognition. The proposed method only 
supports tracking of one user at a time, but it could be modified 
to support multiple people, and the functionality for swapping 
two people’s faces could be re-implemented into this new 
solution. 

Currently the proposed method must be set up with custom 
face textures manually mapped to the Candide-3 model, but 
this could be made automatic through face feature detection 
and texture extraction methods. 

Another improvement could be to convert the video stream 
into a 3D point cloud using the Point Cloud Library (PCL), 
which would allow much more advanced techniques for 
overlaying face textures and would reduce the disparity 
between the face overlay and user’s face. This would also 
make it relatively easy to enable foreground objects to occlude 
the face overlay, which currently is not possible. 

Finally, the use of the proprietary Kinect library could be 
replaced with well understood head pose and facial feature 
detection algorithms, or even with algorithms suited for 3D 
point cloud data. There may be large performance and 
reliability improvements available by doing this. 
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Source code available: 
https://github.com/jorticus/face-replace  
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