
Face Replacement Demo using the

Kinect Depth Sensor

Jared Sanson

Department of Electrical and Computer Engineering

University of Canterbury

Christchurch, New Zealand

jared@jared.geek.nz

Dr. Richard Green

Department of Computer Science

University of Canterbury

Christchurch, New Zealand

richard.green@canterbury.ac.nz

Abstract— This paper proposes a face-swap method, wherein the

use of a depth sensor and improved algorithms are used to

improve the quality and realism of a face swap process. By

tracking head pose and facial features in 3D using a Kinect depth

camera, an accurate model of the face can be constructed and

used to deform a texture which is then drawn on top of a 2D

video stream. The use of random regression forests for head pose

estimation is explored, along with a novel method for blending

textures based on luminance. The proposed system shows good

results through a wider range of head rotations than previous

methods, and is able to run at an average of 25fps.

Keywords — depth sensor; face tracking; pose estimation;

kinect; candide; texture warping; face replace

I. INTRODUCTION

The goal of the proposed method is to improve upon a face-
swap method in prior research [2-7] by investigating the use of
a structured light depth camera, and the use of algorithms more
suited to this type of data. A novel method for blending
textures based on luminance is also explored.

The original method would swap people’s faces as they
walked past a display, and demonstrated many common
algorithms for face detection and recognition. It assumed a
simple flat-replacement model with no rotation of the face
texture so it would only work well if the user was facing
directly towards the camera. This can be improved upon by
tracking the user’s face in 3D and utilizing a model of the face
to project the face overlay texture, which will warp the texture
to match the actual face.

Much work has already been done on the face-swap
system, mainly looking at improving performance and more
advanced blending techniques [2, 6, 7]. Instead of improving
on these methods, this paper proposes an entirely different
approach using algorithms more suited for depth camera
imagery.

II. BACKGROUND

A. The Face-Swap System

The original face-swap system requires various algorithms;
the core consists of a face-detection algorithm such as the
Haar-Cascade, which is used to locate the face in the image and
to know where to overlay the swapped face. Object tracking
algorithms such as Camshift or Optical Flow help improve
performance by removing the need to re-detect the face in
every time. It can also help smooth out the movement between
frames, as face detection algorithms tend to be imprecise in
locating the exact location of the face.

Figure 1. Results from two previous face-swap papers [4, 5]

After the face is localised, the face texture can be extracted
from the video and stored in a database, and a new face can be
overlaid on top of the video feed in real-time. This is done by
simply resizing the texture to match the bounding box of the
detected face, although this does not work well if the face
rotates since the bounding box does not rotate with it.

To prevent swapping a user’s face with their own a face
recognition algorithm such as Eigenfaces or Fisherfaces must
be used, which compares the detected face against a database
of faces to ensure the two are different.

B. Previous Work

The first student paper performed on this subject [2]
implemented the Haar-Cascade algorithm for face recognition,
but only used a simple time-based averaging algorithm for
tracking, and had no face recognition at all. The averaging did
provide some resilience to dropped frames but because it had to
detect the face for each new frame it had reduced performance.
It did however attempt to adjust the face overlay colour by

analysing a histogram of skin coloured pixels, which could
potentially be adapted for the method proposed in this paper.

This was improved upon by subsequent papers [3, 4]
which added face recognition using the Eigenfaces algorithm,
and object tracking using Camshift. These modifications
significantly improved performance and reliability, although
the initial face detection stage still took a large amount of time
to process. The Camshift algorithm additionally allowed the
face texture to be rotated in the plane of the screen.

One paper looked at replacing the face recognition
algorithm with Local Binary Patterns (LBP), which improved
the running performance, but offered no improvements for the
initial face detection stage [7].

Another paper looked at improving the performance of the
initial face detection by implementing the Viola-Jones face
detector algorithm using a highly parallel GPGPU, which
showed an improvement of up to 300% [6]. It also investigated
the use of Fisherfaces for face recognition, which has the
advantage of being invariant to changing lighting conditions. It
improved the reliability of tracking and produced less false
positives than previous methods, and additionally attempted to
improve the face overlay blending by utilizing a radial blur
filter to smooth the edges of the face texture. The radial filter
produced very good results, but only in the case where the
lighting conditions and head rotation were similar.

Figure 2. Face replace using a radial blur filter [6]

C. Depth Sensors

There are various methods for acquiring 3D depth data
which should all perform well for the methods outlined in this
paper. Structured-light is one such technology that has become
rather popular, due to the emergence of cheap depth cameras
such as the Microsoft Kinect or the PrimeSense camera. These
cameras do not perform as well as more sophisticated cameras
and fail in bright sunlight, but their low cost provides a huge
advantage for researchers.

Figure 3. The Kinect depth camera [1]

Adapting the existing face-swap framework to utilize a
structured-light depth sensor allows the use of much more
advanced algorithms specifically designed for RGB+depth
data. Some of the commercial offerings that implement such
algorithms include Microsoft’s Kinect Developer SDK [1]
which is designed for use with their Kinect depth sensor, and
Visage Technologies’ face tracking library [8] which operates
on regular 2D imagery. Unfortunately the algorithms used are
proprietary and details about their implementation are not
available, so this paper will outline published algorithms that
achieve a similar result.

D. Head Pose Estimation

Figure 4. Head Pose Estimation [9]

There are a few various algorithms that can be used to
determine the orientation of the head in 3D space, which
generally use machine learning techniques [9, 10] such as use
of neural networks and random regression forests, in order to
determine a rough orientation estimate. While the Kinect face
tracking library does not outline the specific algorithm it uses,
it is quite possible it uses neural networks or regression forests
as Microsoft have published a paper which uses these methods
for detecting a skeleton model [11].

Another paper proposes a more analytical method which
involves solving a large matrix, and has the advantage that it
does not require prior training [12]. This method was able to
run in real-time, with the head between 0.6 to 6 meters from
the camera.

Colour + Depth

Camera

Face Tracking

RGB+Depth

Head Pose

Facial Features

Face Model

(Candide-3)

Texture

Mapping

3D

Render

Mesh Vertices

Mesh Vertices

+ UV coords

E. Candide Face Model

The Candide model is widely used for various research, as
it provides a simple mesh with standardised features and
defines a robust way to deform the mesh based on supplied
parameters. The latest version is Candide-3, and implements
113 vertices, 65 animation units representing various facial
features, and 14 shape units [13]. It also contains a subset of
the MPEG-4 FBA specification [14], which is intended to
provide a way to animate various facial expressions.

The Shape Units allow the Candide-3 mesh to adapt to any
user’s face, such as by changing the distance between the eyes,
or the width and height of the mesh.

F. Face Expression Tracking

In order to control the Animation and Shape Units in the
Candide-3 model, the facial features must be extracted from the
given video frame. This is usually done in 2D on the colour
image stream [8] by locating important facial fiducial points,
however some algorithms have been devised which operate on
depth imagery instead [15].

There are many methods that can be used for locating these
facial feature points, such as the Haar classifier as used in
Tresadern, et al. [16], or through stochastic methods such as
those used in Dornaika and Davoine [17].

Figure 5. Tracking and recognition of facial features[17]

The Kinect library also provides a robust facial feature
tracking algorithm designed specifically for the Candide
model, however the exact methods used are not published. It
only provides 6 Animation Units and 11 Shape Units, which is
not enough to control all of the facial animation parameters, but
it is enough to show basic deformation of the mouth, chin, and
eyebrows.

G. Limitations

There are a few limitations that apply to the current work
done on the 2D face-swap system, which this paper hopes to
solve. Currently these methods assume the face is a flat
rectangle, with the bounds detected through the use of a face
detection algorithm such as the Haar Cascade classifier or the
Viola Jones classifier. These algorithms do not provide any
information about the shape of the face being detected, nor the
orientation and pose of the face in 3D space.

Because of this assumption, the texture cannot be
realistically blended in all orientations of the face, especially
for extreme rotations which introduce occlusion and significant

texture warping. This cannot be fixed by improved blending
techniques such as the radial blur filter [6], because it assumes
the user is looking directly towards the camera with no rotation
in 3D space.

III. SOLUTION

A. Overview

The methods outlined above are
combined in order to build a new face-
swapping demonstration system, using a
structured light depth camera instead of
a regular colour camera. The proposed
method is restricted to using a pre-
defined face overlay texture and face
model.

The proposed method consists of a
head tracking and pose determination
algorithm, but does not implement face
recognition like the original method as
the face overlay texture is pre-defined.
After determining the head pose and
location, facial features are extracted
which are later used to deform the face
model.

The Candide-3 model is used as the
face model, which can be deformed by
head pose, animation units detected
from the facial features, and shape units
which represent the shape of the
detected face. These deformations allow
a single mesh to take the shape of any detected face.

 A face texture can then be mapped to the model so that it
deforms to match the tracked user, and an advanced luminance-
blend algorithm used to blend the texture onto the underlying
video frame.

Finally, the texture mapped face mesh is passed onto a 3D
rendering engine which can project the face model with the
assigned texture onto the camera image plane, thus overlaying
the face onto a tracked user.

B. Face Tracking

The Kinect Developer
SDK is used for detecting and
tracking faces within video
obtained from a depth sensor.
It operates on both RGB and
depth imagery to obtain the
head pose, head location in 3D
space, 2D facial feature points
(shown in the figure to the
right), and Candide-compatible
animation and shape units. The
rotation and location alone are
enough to implement the face
swap method, although implementing shape units will allow

[1] Figure 6. 2D facial features

returned by the Kinect library [1]

the face model to match different head shapes, and animation
units will allow the face model to match the user’s facial
expressions.

The initial search for a face is a lengthy operation, so the
Kinect library provides a separate tracking algorithm which
performs much less processing once a face is found in the
image. This allows for much higher frame rates during active
use, in much the same way the original face-swap methods
used Camshift to prevent having to detect a face every frame.

Generally it takes a certain amount of time before shape
units are available to the application, presumably because the
library needs to learn the shape of the tracked face. Once these
values are available, the face model can be updated to match
the user’s personal head shape and size.

The biggest limitation of the Kinect Face Tracking Library
is that it only reports 6 animation units, which only provides
enough information to animate the lips, eyebrows, and lower
jaw. The MPEG-4 FBA specification [14] defines 66 Facial
Animation Parameters (FAPs) in total, so other libraries and
algorithms may be able to detect a much larger set.

Another problem with the Face Tracking Library is latency
and jitter in the returned data, which causes some alignment
issues of the face overlay when the user is moving. The jitter
can be reduced through the use of a temporal filtering function
such as a low pass filter or a kalman filter, and the latency
could be improved by improving the underlying library or
augmenting it with other computer vision techniques such as
optical flow or the Camshift algorithm.

C. Face Model

The face model is
implemented using the
WFM file format, which
provides a way to define
vertices, faces, animation
units, shape units, texture
co-ordinates, and a global
transformation. However for
simplicity, the Candide-3
model is used as it is a well-
established model used in
many research papers [13],
although the texture co-
ordinates must be defined manually. The Candide-3 model
defines 65 animation units and 14 shape units, but not all of
these are actually used or required.

AU/SU deformation of the mesh is optional, since just the
head rotation and translation can be enough to transform the
face model to align properly with the user’s face. However the
use of SUs to deform the mesh could potentially allow the
system to work over a much larger variety of faces, and the use
of AUs can modify the texture to make it appear to match the
user’s facial expressions.

D. Texture Mapping

For best results the desired face texture can be manually
mapped to the Candide-3 mesh, so that the various facial
features are properly aligned to the texture. Alternatively, the

texture can be automatically extracted from the current video
frame, using the current face mesh overlay to map the texture
to the Candide-3 vertices. This technique may fail if the head is
rotated, due to obscured regions in the face, so a manual texture
mapping is used for this paper.

Figure 8. Manual Candide-3 Texture Mapping

The figure above shows the process of manually mapping
UV texture co-ordinates of the Candide-3 model to a 2D face
texture image. The left view shows the 2D texture co-ordinates
with respect to the texture, while the 3 views on the right show
the texture applied to the 3D Candie-3 mesh.

E. Blending

In order to provide a smooth blend of the face texture onto
the video stream, the texture is manually blurred at the edges
and stored as an RGB+Alpha image. This improves the
blending around the edges of the face overlay, by allowing the
face overlay texture to smoothly blend into the underlying
video frame.

However if lighting conditions differ from the original
overlay image, the overlay will not match the video and it will
not blend smoothly. To help improve blending under differing
lighting conditions, we can employ a luminance blend followed
by automatic brightness correction, as shown in the following
figure:

Figure 9. Left – naïve alpha blend, middle – luminance blend, right –

luminance blend with automatic levels correction.

The luminance blend combines the luminance (brightness)
of the face texture with the chrominance (colour) of the
underlying video frame. This works because most of the
perceptible detail in an image lies in the luminance channel
[18], so the result is that the face takes the colour of the
underlying video while retaining the detail. This is especially
useful for cameras with poor white balance correction, such as
in the figure above which makes the face appear to have a
purple tint.

Figure 7. The Candide-3 model

Luminance blending is performed in a luma-chroma colour
space using an encoding such as Y’CbCr which splits the
luminance and chrominance into perceptually meaningful
information. For this application the conversion between RGB
and Y’CbCr as defined by the JPEG standard is used[19]:

[

] [

] [

]

[

] [

] [

]

The exact equation used is not important, as long as it
converts between RGB and luma-chroma colour space. The
following figure illustrates the effect of converting between
RGB and Y’CbCr encodings:

Figure 10. Y'CbCr components1

Generally it is not desirable to use a colour space such as
HSV, because the value component does not correspond to
human perception of luminosity (in HSV colour space all fully
saturated colours are defined to be the same brightness, when
in reality green is brighter than blue). It is also not trivial to
convert between RGB and HSV colour spaces, and involves a
lot of conditional calculations.

Luminance blending alone is not sufficient, as differences
in brightness can show up if the video is substantially brighter
or darker than the face overlay. To compensate for this, the
underlying face in the video frame is analysed to compute the
minimum and maximum brightness, and the face overlay
texture compensated to match accordingly. This helps keep the
blend looking consistent in a wide range of lighting conditions.

1
 http://commons.wikimedia.org/wiki/File:Barn-yuv.png

Figure 11. Brightness correction using luminance histograms

This is done by analysing the luminance histogram of the
underlying face region in the video, which counts how many
times a pixel value occurs in the image. To find the minimum
and maximum brightness, the pixel counts are summed to find
the total count, and then accumulated to find the 1% and 99%
points in the histogram. This helps provide some robustness
against noise, in case there are a few counts of completely
black or white pixels. To simplify calculations, this assumes
the source image is normalised.

The only limitation remaining is that these methods cannot
compensate for differing shadows, for example if the light
source is located on the opposite side of the face overlay
image, or if a shadow falls onto the face. This could perhaps be
compensated for by blurring the underlying face image, and
blending the luminance channels of both the face and the video
to attempt to add shadows to the face overlay texture, although
this was not explored in this paper.

For efficiency and flexibility, this process could be
performed using GLSL shaders, which run directly on the GPU
and are well suited for this type of processing. The use of
Y’CbCr colour space serves well for this kind of work, as the
transformation between RGB and Y’CbCr can be done quickly
and efficiently with a single matrix multiply, and the brightness
correction values can be passed in as parameters.

F. Rendering

In order to overlay the 3D face model on top of the 2D
video feed, the 3D model must be projected onto the plane of
the camera using a perspective transform. This can be modelled
with a simple pin-hole camera model, which defines the
camera’s focal plane as a function of its sensor size and focal
length. This model is shown below:

http://commons.wikimedia.org/wiki/File:Barn-yuv.png

Figure 12. Pinhole camera model

The deformed 3D face model’s origin is defined to be at the
centre of the head, so it must be rotated and then translated in
order to put it in world space. After this a perspective
projection matrix can be applied to project the 3D model onto
the image plane.

Rotation of the face model returned by the Kinect Face
Tracking Library is defined by a set of three intrinsic euler
rotations (α, β, γ):

 () () ()

 [

] [

] [

]

And translation is defined as meters from the camera’s origin:

 [

]

The Kinect camera has a small offset between the camera
origin and the world origin, however for this application it can
be ignored it as it does not introduce much error. Thus, eye-
space and world-space are identical and no transformation
between the two is required.

To construct the perspective projection matrix, the intrinsic
camera parameters must be known. For the Kinect camera, the
focal length is approximately 87.64mm at a resolution of
640x480. Using these values we can construct the perspective
projection matrix[20]:

[

]

where is the focal length,

, is the near

clipping plane, and is the far clipping plane. The near and

far clipping planes are used for depth testing within the
OpenGL pipeline[20], and for best results should be set to the
closest and furthest distances the Kinect can measure.

Finally to render the 3D model onto the image plane, the
required transformations are applied to every vertex of the face
model in order to convert them to Normalized Device Space
(NDC):

[

]

 [

]

[

] [

 ⁄

 ⁄

 ⁄

]

The process of mapping world co-ordinates to clipping co-
ordinates is shown below:

Figure 13. OpenGL Perspective Projection [20]

IV. RESULTS

Figure 14. Final result showing luminance blend, automatic level

adjustment, and texture warping

Figure 15. Result showing inaccuarcy in texture to mesh mapping -
the nose has deformed incorrectly

Figure 16. Result showing the effects of texture warping and 3D
projection

A. Hardware & Software

The solution was implemented in VC++ using the Kinect
Face Tracking Library [1], with OpenGL and GLSL shaders
for rendering, and OpenNI for the depth sensor interface.
OpenNI allows the demo software to be used with any
compatible depth camera, although the Kinect Face Tracking
Library may restrict use to Kinect cameras only.

A Kinect depth sensor was used as the input device and the
demonstration program was run on an Intel i5 3.3GHz CPU
with an NVIDIA GPU for OpenGL rendering. The
demonstration program was compiled with full optimisations
and no debug information, to maximise performance.
Performance is significantly reduced if it is compiled in debug
mode.

B. Quantified Results

The demonstration program ran at between 15-30FPS while
detecting a face, which is close to the 30FPS update rate of the
Kinect camera, and similar to previous research[7] [6].

Limits:

Minimum Detection Distance 550mm

X Rotation (Pitch) -40° to 40°

Y Rotation (Yaw) -40° to 40°

Z Rotation (Roll) -80° to 80°

C. Limitations

The implemented solution is limited in the range of face
poses it can track, as it is only trained to detect faces that are
looking towards the camera. It tracks best when the head pitch
is less than 20°, roll is less than 90°, and yaw is less than 45°.
This is a limitation of the proprietary library used, but could
potentially be improved by training a custom implementation
on a larger set of head poses. It also exhibits poor tracking
when the head rotates close to these limits.

Heads must also not be too far or too close, or they cannot
be tracked. This is partially due to the reduced resolution of the
depth imagery at close and far ranges, but is actually more of a
limitation of the training set.

The tracked head pose also shows some jitter and latency,
because no filtering or interpolation is performed on the data.
Tracking latency is particularly noticeable when the head
moves across the frame, and results in misalignment between
the face overlay and the tracked user.

Another limitation of this proposed method is the absence
of any face recognition or face texture extraction algorithms,
such as what was used in previous work. As such it must rely
on manually provided face textures to overlay onto the user’s
face, and the texture must be manually mapped to the Candide-
3 face model.

V. CONCLUSION

The proposed method provides a much more realistic face
overlay than what could be done with regular 2D algorithms,
while operating with around the same level of performance and
reliability. The improved blending technique allows a face
overlay texture to work in different lighting conditions, and the
face model allows the face texture to be warped to match the
tracked user’s face.

A. Future Work

There are many improvements that could be made in future
research to re-implement the original functionality provided in
existing face-swap work, such as automatic face texture
extraction and face recognition. The proposed method only
supports tracking of one user at a time, but it could be modified
to support multiple people, and the functionality for swapping
two people’s faces could be re-implemented into this new
solution.

Currently the proposed method must be set up with custom
face textures manually mapped to the Candide-3 model, but
this could be made automatic through face feature detection
and texture extraction methods.

Another improvement could be to convert the video stream
into a 3D point cloud using the Point Cloud Library (PCL),
which would allow much more advanced techniques for
overlaying face textures and would reduce the disparity
between the face overlay and user’s face. This would also
make it relatively easy to enable foreground objects to occlude
the face overlay, which currently is not possible.

Finally, the use of the proprietary Kinect library could be
replaced with well understood head pose and facial feature
detection algorithms, or even with algorithms suited for 3D
point cloud data. There may be large performance and
reliability improvements available by doing this.

VI. REFERENCES

[1] Microsoft Developer Network. (2013). Kinect Face

Tracking SDK. Available:

http://msdn.microsoft.com/en-

us/library/jj130970.aspx

[2] Z. Zheng and R. Green, "Face Replace," University of

Canterbury, 2009.

[3] M. Elmadani and R. Green, "Face Replace,"

University of Canterbury, 2011.

[4] H. Jenkins and R. Green, "Improved Method of Face

Replacement," University of Canterbury, 2011.

[5] L. Chin and R. Green, "Improved Face Replace

Demo," University of Canterbury, 2013.

[6] M. Lancaster and R. Green, "Enhanced real time

facial detection and replacement using GPGPU,"

University of Canterbury, 2013.

[7] M. Smith and R. Green, "Improved Face Replacement

Demo," University of Canterbury, 2013.

[8] Visage Technologies. (May 2014). FaceTrack SDK.

Available:

http://www.visagetechnologies.com/products/visagesd

k/facetrack/

[9] G. Fanelli, J. Gall, and L. Van Gool, "Real Time Head

Pose Estimation with Random Regression Forests,"

2011.

[10] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L.

Gool, "Random Forests for Real Time 3D Face

Analysis," International Journal of Computer Vision,

vol. 101, pp. 437-458, 2013.

[11] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M.

Finocchio, R. Moore, et al., "Real-Time Human Pose

Recognition in Parts from Single Depth Images,"

Microsoft Research Cambridge & Xbox Incubation,

2011.

[12] F. A. Kondori, S. Yousefi, L. Haibo, S. Sonning, and

S. Sonning, "3D head pose estimation using the

Kinect," in Wireless Communications and Signal

Processing (WCSP), 2011 International Conference

on, 2011, pp. 1-4.

[13] J. Ahlberg. (2001). Candide-3 - An Updated

Parameterised Face. Available:

http://www.icg.isy.liu.se/candide/

[14] "MPEG-4 Face and Body Animation (MPEG-4 FBA)

- An Overview," ed: Visage Technologies AB 2012.

[15] S. Gupta, M. K. Markey, and A. C. Bovik,

"Anthropometric 3D Face Recognition," International

Journal of Computer Vision, vol. 90, pp. 331-349,

2010.

[16] P. Tresadern, M. Ionita, and T. Cootes, "Real-Time

Facial Feature Tracking on a Mobile Device,"

International Journal of Computer Vision, vol. 96, pp.

280-289, 2012.

[17] F. Dornaika and F. Davoine, "Simultaneous Facial

Action Tracking and Expression Recognition in the

Presence of Head Motion," International Journal of

Computer Vision, vol. 76, pp. 257-281, 2008.

[18] S. Sudhakaran. (2013). Understanding Luminance

and Chrominance. Available:

http://wolfcrow.com/blog/understanding-luminance-

and-chrominance/

[19] C.-C. Microsystems. (1992). JPEG File Interchange

Format. Available:

http://www.w3.org/Graphics/JPEG/jfif3.pdf

[20] S. H. Ahn. (2012). OpenGL Projection Matrix.

Available:

http://www.songho.ca/opengl/gl_projectionmatrix.ht

ml

Images of Gabe Newell used in this paper are public

domain.

Source code available:
https://github.com/jorticus/face-replace

http://msdn.microsoft.com/en-us/library/jj130970.aspx
http://msdn.microsoft.com/en-us/library/jj130970.aspx
http://www.visagetechnologies.com/products/visagesdk/facetrack/
http://www.visagetechnologies.com/products/visagesdk/facetrack/
http://www.icg.isy.liu.se/candide/
http://wolfcrow.com/blog/understanding-luminance-and-chrominance/
http://wolfcrow.com/blog/understanding-luminance-and-chrominance/
http://www.w3.org/Graphics/JPEG/jfif3.pdf
http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.songho.ca/opengl/gl_projectionmatrix.html
https://github.com/jorticus/face-replace

